TECHNICAL DATA SHEET

Value

SE2005 2 part encapsulation and potting silicone

Property

Description
This is a 2-component, silicone elastomer system specially designed for electronic potting and encapsulation applications. It offers good protection against chemicals, environmental contamination, mechanical shock, vibration and impact damage.
It can be employed in areas where low flammability is a
prerequisite. The cured elastomer can be repaired. The
component parts have relatively low viscosities and are readily
mixed either by hand or machine

Key Features

Description

- Low viscosity
- Deep section cure
- Excellent dielectric properties
- Protects against shock and vibration

Protects against shock/vibration.

Use and Cure Information

The product is supplied as two components 'A' and 'B'. These components should be mixed together in the ratio by weight shown opposite. Mixing can be done by hand or by automated dispensing machine using a static mixer nozzle. A nozzle of at least 9 GXF type elements is recommended for uniform mixing of both components

The dispensing machine mix ratios should be adjusted if mixing by volume and not weight. IMPORTANT the mixed components will cure in the nozzle so to preserve nozzles a continuous process is required or a change of nozzle after the task is completed. Complete mixing of each component is achieved within the first 50-60% of the nozzle.

Mixing

Both the 'A' and 'B' parts should be well stirred to ensure the material is uniform and any settlement of the fillers have been

Place the required amount of 'A' and 'B' parts by weight at the mix ratio shown opposite, in a clean plastic or metal container of approximately 3 times their volume, and mix until the colour of the mixture is uniform. For best results, we recommend degassing. Degas by intermittent evacuation, the larger volume of the mixing vessel helps prevent overflow during this operation. In case of automatic dispensing with static mixing head, the two components should be degassed before processing. Recommended vacuum conditions are 30-50 mbar intermittently

over 5-10 minutes. Cast the mixture either by gravity or pressure injection.

It is important to check the compatibility in preliminary tests if unknown substrates are used.

Health & Safety

Health and Safety

Safety Data Sheets available on request.

Packaging

CHT Encapsulants are available in a variety packaging including bulk containers. Please contact our sales department for more information.

Shelf Life

Revision Date 29 Apr 2021

Revision No

Download Date 03 May 2024

Uncured Product		
Cure Type	Condensation	
De-mould Time / Full Cure at 23°C/73°F		24 hrs
Density A	BS ISO 2781	1.21
Density B	BS ISO 2781	1.14
Mix Ratio By Weight		100:1
Pot Life mins at 23°C/73°F		1 hr mins
Rheology		Liquid
Viscosity A	Brookfield	9000 cP
Viscosity B	Brookfield	300 cP
Viscosity Mixed	Brookfield	9000 cP

Test Method

Cured Product

7 days at 23+/-2°C and 50+/-5% humidity

CTE Volumetric ppm/°C		762 ppm/°C
Color		White
Density	BS ISO 2781	1.20 g/cm3
Elongation at Break	ISO 37	180 %
Hardness Shore A	ASTM D 2240-95	40
Linear Shrinkage (%)		0.5 %
Max Working Temp		220 °C / 428 °F
Min Working Temp		-50 °C / -58 °F
Tear Resistance (N/mm)	BS ISO 34-1	2 N/mm / 11 ppi
Tensile Strength	ISO 37	1.08 N/mm2 / 157 psi
Thermal Conductivity		0.24 W/mK

Electrical Properties

Dielectric Constant	ASTM D-150	3.4
Dielectric Strength kV/mm	ASTM D-149	>18 kV/mm / 0 V/mil
Volume Resistivity (Ohms cm)	ASTM D-257	3E+14 ohms cm

Storage Max Storage Temperature 40 °C / 104 °F

9 mths